UPF is an acronym for Unified Power Format which is an IEEE standard for specifying power intent. In this article we will learn about writing an UPF for a given power requirement in a design.
Consider the design shown below –

Given Power Intent
There are primarily 3 power domains –
• Logic inside aon_wrapper [but not inside aon_pgd_wrapper] is always-on.
• Logic inside pgd_wrapper can be power gated.
• Logic inside aon_pgd_wrapper can be power gated but won’t be power gated when pgd_wrapper is powered ON.
There are two voltage domains –
• The supply voltage to logic inside aon_wrapper [but not inside aon_pgd_wrapper] and logic inside pgd_wrapper is 0.9V.
• The supply voltage to logic inside aon_pgd_wrapper is 1.1V.
There are two registers – reg A and reg B. The state of reg A needs to be retained in power gated state.
There are six signals sig1-sig6 coming to and from different logic as shown in Figure 1.
Now let us write the UPF for the given power intent –
First I will advise you to go through some important upf command syntax discussed here.
You can check the video below which shows step-by-step how we reached the power intent diagram shown in Figure 2.
# Create Power Domains
create_power_domain pd_top -include_scope
create_power_domain pd_aon -elements {aon_wrapper}
create_power_domain pd_gated -elements {pgd_wrapper}
create_power_domain pd_gated_aon -elements {{aon_wrapper/aon_pgd_wrapper}}
# Create Supply Ports
create_supply_port VCCL -direction in -domain pd_top
create_supply_port VCCH -direction in -domain pd_top
create_supply_port GND -direction in -domain pd_top
# Create Supply Nets
create_supply_net VCCL -domain pd_top
create_supply_net VCCH -domain pd_top
create_supply_net GND -domain pd_top
create_supply_net VCCL -domain pd_aon -reuse
create_supply_net GND -domain pd_aon -reuse
create_supply_net VCCH -domain pd_gated_aon –reuse
create_supply_net VCCH_gated -domain pd_gated_aon
create_supply_net GND -domain pd_gated_aon -reuse
create_supply_net VCCL -domain pd_gated -reuse
create_supply_net VCCL_gated -domain pd_gated
create_supply_net GND -domain pd_gated -reuse
# Connect Supply Nets with corresponding Ports
connect_supply_net VCCL -ports VCCL
connect_supply_net VCCH -ports VCCH
connect_supply_net GND -ports GND
# Establish Connections
set_domain_supply_net pd_top -primary_power_net VCCL -primary_ground_net GND
set_domain_supply_net pd_aon -primary_power_net VCCL -primary_ground_net GND
set_domain_supply_net pd_gated_aon -primary_power_net VCCH_gated -primary_ground_net GND
set_domain_supply_net pd_gated -primary_power_net VCCL_gated -primary_ground_net GND
# Shut-Down Logic for pgd_wrapper & aon_pgd_wrapper
create_power_switch sw_pgd_wrapper \
-domain pd_gated \
-input_supply_port “sw_VCCL VCCL ” \
-output_supply_port “sw_VCCL_gated VCCL_gated” \
-control_port “sw_pgd_en aon_wrapper/pmu/pgd_en” \
-on_state “SW_PGD_ON sw_VCCL {!sw_pgd_en}”
create_power_switch sw_aon_pgd_wrapper \
-domain pd_gated_aon \
-input_supply_port “sw_VCCH VCCH ” \
-output_supply_port “sw_VCCH_gated VCCH_gated” \
-control_port “sw_aon_pgd_en aon_wrapper/pmu/aon_pgd_en” \
-on_state “SW_AONPGD_ON sw_VCCH {!sw_aon_pgd_en}”
# Isolation strategy
set_isolation isol_clamp1_sig_from_pgd \
-domain pd_gated \
-isolation_power_net VCCL \
-isolation_ground_net GND \
-clamp_value 1 \
-elements {pgd_wrapper/sig2}
set_isolation_control isol_clamp1_sig_from_pgd \
-domain pd_gated \
-isolation_signal aon_wrapper/pmu/isol_pgd_en \
-isolation_sense low \
-location parent
set_isolation isol_clamp0_sig_from_pgd \
-domain pd_gated \
-isolation_power_net VCCL \
-isolation_ground_net GND \
-clamp_value 0 \
-elements {pgd_wrapper/sig4}
set_isolation_control isol_clamp0_sig_from_pgd \
-domain pd_gated \
-isolation_signal aon_wrapper/pmu/isol_pgd_en \
-isolation_sense low \
-location parent
set_isolation isol_sig_from_aonpgd \
-domain pd_gated_aon \
-isolation_power_net VCCH \
-isolation_ground_net GND \
-clamp_value 1 \
-elements {aon_wrapper/aon_pgd_wrapper/sig5}
set_isolation_control isol_sig_from_aonpgd \
-domain pd_gated_aon \
-isolation_signal aon_wrapper/pmu/isol_aonpgd_en \
-isolation_sense low \
-location parent
# Level Shifter strategy
set_level_shifter LtoH_sig_to_aonpgd \
-domain pd_gated_aon \
-applies_to inputs \
-rule low_to_high \
-location self
set_level_shifter HtoL_sig_from_aonpgd \
-domain pd_gated_aon \
-applies_to outputs \
-rule high_to_low \
-location self
# Retention strategy
set_retention pgd_retain \
-domain pd_gated \
-retention_power_net VCCL \
-retention_ground_net GND \
-elements {pgd_wrapper/regA}
set_retention_control pgd_retain \
-domain pd_gated \
-save_signal {aon_wrapper/pmu/ret_en high} \
-restore_signal {aon_wrapper/pmu/ret_en low}
# Create Power State Table
add_port_state VDDH \
-state {HighVoltage 1.1}
add_port_state VDDL \
-state {LowVoltage 0.9}
add_port_state sw_aon_pgd_wrapper/sw_VCCH_gated \
-state {HighVoltage 1.1} \
-state {aonpgd_off off}
add_port_state sw_pgd_wrapper/sw_VCCL_gated \
-state {LowVoltage 0.9} \
-state {pgd_off off}
create_pst pwr_state_table \
-supplies {VCCH VCCL VDDH_gated VDDL_gated}
add_pst_state PRE_BOOT \
-pst pwr_state_table \
-state { HighVoltage LowVoltage aonpgd_off pgd_off}
add_pst_state AONPGD_ON \
-pst pwr_state_table \
-state { HighVoltage LowVoltage HighVoltage pgd_off}
add_pst_state PGD_ON \
-pst pwr_state_table \
-state { HighVoltage LowVoltage aonpgd_off LowVoltage}
add_pst_state ALL_ON \
-pst pwr_state_table \
-state { HighVoltage LowVoltage HighVoltage LowVoltage}
